Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: covidwho-20242253

ABSTRACT

Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.


Subject(s)
COVID-19 , Interferon Type I , Animals , Interferons/genetics , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferon Type I/genetics , Cytokines , Immunity, Innate , Immune Evasion
2.
Emerg Infect Dis ; 29(7): 1386-1396, 2023 07.
Article in English | MEDLINE | ID: covidwho-20237258

ABSTRACT

Isolating and characterizing emerging SARS-CoV-2 variants is key to understanding virus pathogenesis. In this study, we isolated samples of the SARS-CoV-2 R.1 lineage, categorized as a variant under monitoring by the World Health Organization, and evaluated their sensitivity to neutralizing antibodies and type I interferons. We used convalescent serum samples from persons in Canada infected either with ancestral virus (wave 1) or the B.1.1.7 (Alpha) variant of concern (wave 3) for testing neutralization sensitivity. The R.1 isolates were potently neutralized by both the wave 1 and wave 3 convalescent serum samples, unlike the B.1.351 (Beta) variant of concern. Of note, the R.1 variant was significantly more resistant to type I interferons (IFN-α/ß) than was the ancestral isolate. Our study demonstrates that the R.1 variant retained sensitivity to neutralizing antibodies but evolved resistance to type I interferons. This critical driving force will influence the trajectory of the pandemic.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/genetics , Interferon Type I/genetics , Antibodies, Neutralizing , COVID-19 Serotherapy , Canada/epidemiology , Antibodies, Viral , Spike Glycoprotein, Coronavirus
3.
Signal Transduct Target Ther ; 8(1): 170, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2292813

ABSTRACT

Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.


Subject(s)
COVID-19 , Interferon Type I , Humans , Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics , DNA Helicases/genetics , COVID-19/genetics , RNA Helicases/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/genetics , DNA , Interferon Type I/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
4.
Emerg Microbes Infect ; 12(1): 2178238, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2236789

ABSTRACT

5-Methylcytosine (m5C) is a widespread post-transcriptional RNA modification and is reported to be involved in manifold cellular responses and biological processes through regulating RNA metabolism. However, its regulatory role in antiviral innate immunity has not yet been elucidated. Here, we report that NSUN2, a typical m5C methyltransferase, negatively regulates type I interferon responses during various viral infections, including SARS-CoV-2. NSUN2 specifically mediates m5C methylation of IRF3 mRNA and accelerates its degradation, resulting in low levels of IRF3 and downstream IFN-ß production. Knockout or knockdown of NSUN2 enhanced type I interferon and downstream ISGs during various viral infection in vitro. And in vivo, the antiviral innate response is more dramatically enhanced in Nsun2+/- mice than in Nsun2+/+ mice. The highly m5C methylated cytosines in IRF3 mRNA were identified, and their mutation enhanced cellular IRF3 mRNA levels. Moreover, infection with Sendai virus (SeV), vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), or Zika virus (ZIKV) resulted in a reduction of endogenous NSUN2 levels. Especially, SARS-CoV-2 infection (WT strain and BA.1 omicron variant) also decreased endogenous levels of NSUN2 in COVID-19 patients and K18-hACE2 KI mice, further increasing type I interferon and downstream ISGs. Together, our findings reveal that NSUN2 serves as a negative regulator of interferon response by accelerating the fast turnover of IRF3 mRNA, while endogenous NSUN2 levels decrease during SARS-CoV-2 and various viral infections to boost antiviral responses for effective elimination of viruses.


Subject(s)
COVID-19 , Interferon Type I , Virus Diseases , Zika Virus Infection , Zika Virus , Animals , Mice , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Methylation , Zika Virus/metabolism , Mice, Knockout , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antiviral Agents , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism
5.
J Clin Invest ; 133(3)2023 02 01.
Article in English | MEDLINE | ID: covidwho-2223920

ABSTRACT

Since 2003, rare inborn errors of human type I IFN immunity have been discovered, each underlying a few severe viral illnesses. Autoantibodies neutralizing type I IFNs due to rare inborn errors of autoimmune regulator (AIRE)-driven T cell tolerance were discovered in 2006, but not initially linked to any viral disease. These two lines of clinical investigation converged in 2020, with the discovery that inherited and/or autoimmune deficiencies of type I IFN immunity accounted for approximately 15%-20% of cases of critical COVID-19 pneumonia in unvaccinated individuals. Thus, insufficient type I IFN immunity at the onset of SARS-CoV-2 infection may be a general determinant of life-threatening COVID-19. These findings illustrate the unpredictable, but considerable, contribution of the study of rare human genetic diseases to basic biology and public health.


Subject(s)
COVID-19 , Interferon Type I , Virus Diseases , Humans , SARS-CoV-2 , Interferon Type I/genetics , Autoantibodies
6.
Mol Immunol ; 153: 212-225, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165717

ABSTRACT

The last two decades have seen the emergence of three highly pathogenic coronaviruses with zoonotic origins, which prompted immediate attention to the underlying cause and prevention of future outbreaks. Intensification of camel husbandry in the Middle East has resulted in increased human-camel interactions, which has led to the spread of potentially zoonotic viruses with human spillover risks like MERS-coronavirus, camelpox virus, etc. Type-I interferons function as the first line of defense against invading viruses and are pivotal for limiting viral replication and immune-mediated pathologies. Seven novel dromedary camel interferon delta genes were identified and cloned. Functional characterization of this novel class of IFNs from the mammalian suborder tylopoda is reported for the first time. The camel interferon-delta proteins resemble the reported mammalian counterparts in sequence similarity, conservation of cysteines, and phylogenetic proximity. Prokaryotically expressed recombinant camel interferon-δ1 induced IFN-stimulated gene expression and also exerted antiviral action against camelpox virus, an endemic zoonotic virus. The pre-treatment of camel kidney cells with recombinant camel IFN-δ1 increased cell survival and reduced camelpox virus in a dose-dependent manner. The identification of novel IFNs from species with zoonotic spillover risk such as camels, and evaluating their antiviral effects in-vitro will play a key role in improving immunotherapies against viruses and expanding the arsenal to combat emerging zoonotic pathogens.


Subject(s)
Camelus , Interferon Type I , Animals , Camelus/genetics , Camelus/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny
7.
Nat Commun ; 13(1): 7255, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2133429

ABSTRACT

Severe COVID-19 causes profound immune perturbations, but pre-infection immune signatures contributing to severe COVID-19 remain unknown. Genome-wide association studies (GWAS) identified strong associations between severe disease and several chemokine receptors and molecules from the type I interferon pathway. Here, we define immune signatures associated with severe COVID-19 using high-dimensional flow cytometry. We measure the cells of the peripheral immune system from individuals who recovered from mild, moderate, severe or critical COVID-19 and focused only on those immune signatures returning to steady-state. Individuals that suffered from severe COVID-19 show reduced frequencies of T cell, mucosal-associated invariant T cell (MAIT) and dendritic cell (DC) subsets and altered chemokine receptor expression on several subsets, such as reduced levels of CCR1 and CCR2 on monocyte subsets. Furthermore, we find reduced frequencies of type I interferon-producing plasmacytoid DCs and altered IFNAR2 expression on several myeloid cells in individuals recovered from severe COVID-19. Thus, these data identify potential immune mechanisms contributing to severe COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Humans , COVID-19/genetics , COVID-19/immunology , Dendritic Cells , Genome-Wide Association Study , Interferon Type I/genetics , Phenotype , Receptors, Chemokine
8.
Viruses ; 14(10)2022 10 09.
Article in English | MEDLINE | ID: covidwho-2143671

ABSTRACT

For industrial vaccine production, overwhelming the existing antiviral innate immune response dominated by type I interferons (IFN-I) in cells would be a key factor improving the effectiveness and production cost of vaccines. In this study, we report the construction of an IFN-I receptor 1 (IFNAR1)-knockout DF-1 cell line (KO-IFNAR1), which supports much more efficient replication of the duck Tembusu virus (DTMUV), Newcastle disease virus (NDV) and gammacoronavirus infectious bronchitis virus (IBV). Transcriptomic analysis of DTMUV-infected KO-IFNAR1 cells demonstrated that DTMUV mainly activated genes and signaling pathways related to cell growth and apoptosis. Among them, JUN, MYC and NFKBIA were significantly up-regulated. Furthermore, knockdown of zinc-fingered helicase 2 (HELZ2) and interferon-α-inducible protein 6 (IFI6), the two genes up-regulated in both wild type and KO-IFNAR1 cells, significantly increased the replication of DTMUV RNA. This study paves the way for further studying the mechanism underlying the DTMUV-mediated IFN-I-independent regulation of virus replication, and meanwhile provides a potential cell resource for efficient production of cell-based avian virus vaccines.


Subject(s)
Flavivirus Infections , Flavivirus , Interferon Type I , Poultry Diseases , Animals , Ducks , Chickens/genetics , Transcriptome , Flavivirus/genetics , Cell Line , Interferon Type I/genetics , Antiviral Agents , Apoptosis , RNA , Interferon-alpha/genetics , Zinc
9.
Front Cell Infect Microbiol ; 12: 1041682, 2022.
Article in English | MEDLINE | ID: covidwho-2141716

ABSTRACT

Understanding the targets and interactions of long non-coding RNAs (lncRNAs) related to the retinoic acid-inducible gene-I (RIG-I) signaling pathway is essential for developing interventions, which would enable directing the host inflammatory response regulation toward protective immunity. In the RIG-I signaling pathway, lncRNAs are involved in the important processes of ubiquitination, phosphorylation, and glycolysis, thus promoting the transport of the interferon regulatory factors 3 and 7 (IRF3 and IRF7) and the nuclear factor kappa B (NF-κB) into the nucleus, and activating recruitment of type I interferons (IFN-I) and inflammatory factors to the antiviral action site. In addition, the RIG-I signaling pathway has recently been reported to contain the targets of coronavirus disease-19 (COVID-19)-related lncRNAs. The molecules in the RIG-I signaling pathway are directly regulated by the lncRNA-microRNAs (miRNAs)-messenger RNA (mRNA) axis. Therefore, targeting this axis has become a novel strategy for the diagnosis and treatment of cancer. In this paper, the studies on the regulation of the RIG-I signaling pathway by lncRNAs during viral infections and cancer are comprehensively analyzed. The aim is to provide a solid foundation of information for conducting further detailed studies on lncRNAs and RIG-I in the future and also contribute to clinical drug development.


Subject(s)
COVID-19 , Interferon Type I , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Signal Transduction , Ubiquitination , Interferon Type I/genetics
11.
Viruses ; 14(10)2022 10 01.
Article in English | MEDLINE | ID: covidwho-2066554

ABSTRACT

Infection with SARS-CoV-2 results in Coronavirus disease 2019 (COVID-19) is known to cause mild to acute respiratory infection and sometimes progress towards respiratory failure and death. The mechanisms driving the progression of the disease and accumulation of high viral load in the lungs without initial symptoms remain elusive. In this study, we evaluated the upper respiratory tract host transcriptional response in COVID-19 patients with mild to severe symptoms and compared it with the control COVID-19 negative group using RNA-sequencing (RNA-Seq). Our results reveal an upregulated early type I interferon response in severe COVID-19 patients as compared to mild or negative COVID-19 patients. Moreover, severely symptomatic patients have pronounced induction of interferon stimulated genes (ISGs), particularly the oligoadenylate synthetase (OAS) family of genes. Our results are in concurrence with other studies depicting the early induction of IFN-I response in severe COVID-19 patients, providing novel insights about the ISGs involved.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2 , Transcriptome , Host-Pathogen Interactions , Antiviral Agents , Interferon Type I/genetics , Lung , Ligases , RNA
12.
Front Immunol ; 13: 949413, 2022.
Article in English | MEDLINE | ID: covidwho-1993792

ABSTRACT

Interferons (IFNs) are a group of cytokines with antiviral, antiproliferative, antiangiogenic, and immunomodulatory activities. Type I IFNs amplify and propagate the antiviral response by interacting with their receptors, IFNAR1 and IFNAR2. In COVID-19, the IFNAR2 (interferon alpha and beta receptor subunit 2) gene has been associated with the severity of the disease, but the soluble receptor (sIFNAR2) levels have not been investigated. We aimed to evaluate the association of IFNAR2 variants (rs2236757, rs1051393, rs3153, rs2834158, and rs2229207) with COVID-19 mortality and to assess if there was a relation between the genetic variants and/or the clinical outcome, with the levels of sIFNAR2 in plasma samples from hospitalized individuals with severe COVID-19. We included 1,202 subjects with severe COVID-19. The genetic variants were determined by employing Taqman® assays. The levels of sIFNAR2 were determined with ELISA in plasma samples from a subgroup of 351 individuals. The rs2236757, rs3153, rs1051393, and rs2834158 variants were associated with mortality risk among patients with severe COVID-19. Higher levels of sIFNAR2 were observed in survivors of COVID-19 compared to the group of non-survivors, which was not related to the studied IFNAR2 genetic variants. IFNAR2, both gene, and soluble protein, are relevant in the clinical outcome of patients hospitalized with severe COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Receptor, Interferon alpha-beta , COVID-19/genetics , COVID-19/mortality , Hospitalization , Humans , Interferon Type I/genetics , Interferon-alpha/genetics , Receptor, Interferon alpha-beta/genetics
13.
Nature ; 609(7928): 754-760, 2022 09.
Article in English | MEDLINE | ID: covidwho-1984401

ABSTRACT

Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.


Subject(s)
COVID-19 , GTPase-Activating Proteins , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors , Host Microbial Interactions , SARS-CoV-2 , Alleles , Animals , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , COVID-19/physiopathology , Disease Models, Animal , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Genetic Predisposition to Disease , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Japan , Lung/pathology , Macrophages , Mesocricetus , Middle Aged , Pneumonia/complications , Pyrazoles/pharmacology , RNA-Seq , SARS-CoV-2/pathogenicity , Viral Load , Weight Loss
14.
Cell Death Dis ; 13(8): 684, 2022 Aug 06.
Article in English | MEDLINE | ID: covidwho-1977989

ABSTRACT

Pattern recognition receptors (PRRs) and interferons (IFNs) serve as essential antiviral defense against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Type III IFNs (IFN-λ) exhibit cell-type specific and long-lasting functions in auto-inflammation, tumorigenesis, and antiviral defense. Here, we identify the deubiquitinating enzyme USP22 as central regulator of basal IFN-λ secretion and SARS-CoV-2 infections in human intestinal epithelial cells (hIECs). USP22-deficient hIECs strongly upregulate genes involved in IFN signaling and viral defense, including numerous IFN-stimulated genes (ISGs), with increased secretion of IFN-λ and enhanced STAT1 signaling, even in the absence of exogenous IFNs or viral infection. Interestingly, USP22 controls basal and 2'3'-cGAMP-induced STING activation and loss of STING reversed STAT activation and ISG and IFN-λ expression. Intriguingly, USP22-deficient hIECs are protected against SARS-CoV-2 infection, viral replication, and the formation of de novo infectious particles, in a STING-dependent manner. These findings reveal USP22 as central host regulator of STING and type III IFN signaling, with important implications for SARS-CoV-2 infection and antiviral defense.


Subject(s)
COVID-19 , Interferon Type I , Membrane Proteins/metabolism , Ubiquitin Thiolesterase , Antiviral Agents/pharmacology , Humans , Interferon Type I/genetics , Interferons/metabolism , Pandemics , SARS-CoV-2 , Ubiquitin Thiolesterase/metabolism , Interferon Lambda
15.
J Med Virol ; 94(12): 6078-6090, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1976744

ABSTRACT

Single-cycle infectious virus can elicit close-to-natural immune response and memory. One approach to generate single-cycle severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is through deletion of structural genes such as spike (S) and nucleocapsid (N). Transcomplementation of the resulting ΔS or ΔN virus through enforced expression of S or N protein in the cells gives rise to a live but unproductive virus. In this study, ΔS and ΔN BAC clones were constructed and their live virions were rescued by transient expression of S and N proteins from the ancestral and the Omicron strains. ΔS and ΔN virions were visualized by transmission electron microscopy. Virion production of ΔS was more efficient than that of ΔN. The coated S protein from ΔS was delivered to infected cells in which the expression of N protein was also robust. In contrast, expression of neither S nor N was detected in ΔN-infected cells. ΔS underwent viral RNA replication, induced type I interferon (IFN) response, but did not form plaques. Despite RNA replication in cells, ΔS infection did not produce viral progeny in culture supernatant. Interestingly, viral RNA replication was not further enhanced upon overexpression of S protein. Taken together, our work provides a versatile platform for development of single-cycle vaccines for SARS-CoV-2.


Subject(s)
COVID-19 , Interferon Type I , COVID-19 Vaccines , Humans , Interferon Type I/genetics , RNA, Viral/genetics , Replicon , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
J Virol ; 96(13): e0061822, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1962091

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored. The current work demonstrated that the host protein, the far upstream element-binding protein 3 (FUBP3), could be controlled by the transcription factor TCFL5, which could suppress PEDV replication through targeting and degrading the nucleocapsid (N) protein of the virus based on selective autophagy. For the ubiquitination of the N protein, FUBP3 was found to recruit the E3 ubiquitin ligase MARCH8/MARCHF8, which was then identified, transported to, and degraded in autolysosomes via NDP52/CALCOCO2 (cargo receptors), resulting in impaired viral proliferation. Additionally, FUBP3 was found to positively regulate type-I interferon (IFN-I) signaling and activate the IFN-I signaling pathway by interacting and increasing the expression of tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3). Collectively, this study showed a novel mechanism of FUBP3-mediated virus restriction, where FUBP3 was found to degrade the viral N protein and induce IFN-I production, aiming to hinder the replication of PEDV. IMPORTANCE PEDV refers to the alphacoronavirus that is found globally and has re-emerged recently, causing severe financial losses. In PEDV infection, the host activates various host restriction factors to maintain innate antiviral responses to suppress virus replication. Here, FUBP3 was detected as a new host restriction factor. FUBP3 was found to suppress PEDV replication via the degradation of the PEDV-encoded nucleocapsid (N) protein via E3 ubiquitin ligase MARCH8 as well as the cargo receptor NDP52/CALCOCO2. Additionally, FUBP3 upregulated the IFN-I signaling pathway by interacting with and increasing tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) expression. This study further demonstrated that another layer of complexity could be added to the selective autophagy and innate immune response against PEDV infection are complicated.


Subject(s)
Coronavirus Infections , Interferon Type I , Nucleocapsid Proteins , Porcine epidemic diarrhea virus , Transcription Factors , Animals , Antiviral Agents , Cell Line , Chlorocebus aethiops , Coronavirus Infections/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , TNF Receptor-Associated Factor 3 , Transcription Factors/metabolism , Ubiquitin-Protein Ligases , Vero Cells
17.
Viruses ; 14(7)2022 06 28.
Article in English | MEDLINE | ID: covidwho-1911660

ABSTRACT

Pathogen-associated molecular patterns, including cytoplasmic DNA and double-strand (ds)RNA trigger the induction of interferon (IFN) and antiviral states protecting cells and organisms from pathogens. Here we discovered that the transfection of human airway cell lines or non-transformed fibroblasts with 24mer dsRNA mimicking the cellular micro-RNA (miR)29b-1* gives strong anti-viral effects against human adenovirus type 5 (AdV-C5), influenza A virus X31 (H3N2), and SARS-CoV-2. These anti-viral effects required blunt-end complementary RNA strands and were not elicited by corresponding single-strand RNAs. dsRNA miR-29b-1* but not randomized miR-29b-1* mimics induced IFN-stimulated gene expression, and downregulated cell adhesion and cell cycle genes, as indicated by transcriptomics and IFN-I responsive Mx1-promoter activity assays. The inhibition of AdV-C5 infection with miR-29b-1* mimic depended on the IFN-alpha receptor 2 (IFNAR2) and the RNA-helicase retinoic acid-inducible gene I (RIG-I) but not cytoplasmic RNA sensors MDA5 and ZNFX1 or MyD88/TRIF adaptors. The antiviral effects of miR29b-1* were independent of a central AUAU-motif inducing dsRNA bending, as mimics with disrupted AUAU-motif were anti-viral in normal but not RIG-I knock-out (KO) or IFNAR2-KO cells. The screening of a library of scrambled short dsRNA sequences identified also anti-viral mimics functioning independently of RIG-I and IFNAR2, thus exemplifying the diverse anti-viral mechanisms of short blunt-end dsRNAs.


Subject(s)
COVID-19 , Interferon Type I , MicroRNAs , Antiviral Agents/pharmacology , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , DEAD-box RNA Helicases/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Interferon Type I/genetics , RNA, Double-Stranded , SARS-CoV-2
18.
J Med Virol ; 94(11): 5174-5188, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1905900

ABSTRACT

A characteristic feature of COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is the dysregulated immune response with impaired type I and III interferon (IFN) expression and an overwhelming inflammatory cytokine storm. RIG-I-like receptors (RLRs) and cGAS-STING signaling pathways are responsible for sensing viral infection and inducing IFN production to combat invading viruses. Multiple proteins of SARS-CoV-2 have been reported to modulate the RLR signaling pathways to achieve immune evasion. Although SARS-CoV-2 infection also activates the cGAS-STING signaling by stimulating micronuclei formation during the process of syncytia, whether SARS-CoV-2 modulates the cGAS-STING pathway requires further investigation. Here, we screened 29 SARS-CoV-2-encoded viral proteins to explore the viral proteins that affect the cGAS-STING signaling pathway and found that SARS-CoV-2 open reading frame 10 (ORF10) targets STING to antagonize IFN activation. Overexpression of ORF10 inhibits cGAS-STING-induced interferon regulatory factor 3 phosphorylation, translocation, and subsequent IFN induction. Mechanistically, ORF10 interacts with STING, attenuates the STING-TBK1 association, and impairs STING oligomerization and aggregation and STING-mediated autophagy; ORF10 also prevents the endoplasmic reticulum (ER)-to-Golgi trafficking of STING by anchoring STING in the ER. Taken together, these findings suggest that SARS-CoV-2 ORF10 impairs the cGAS-STING signaling by blocking the translocation of STING and the interaction between STING and TBK1 to antagonize innate antiviral immunity.


Subject(s)
COVID-19 , Interferon Type I , Autophagy , Humans , Immunity, Innate , Interferon Type I/genetics , Interferons , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/genetics , Open Reading Frames , Protein Serine-Threonine Kinases/genetics , SARS-CoV-2 , Viral Proteins/metabolism
19.
Cells ; 11(10)2022 05 19.
Article in English | MEDLINE | ID: covidwho-1862727

ABSTRACT

Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine (DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA, similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which goes along with the downregulation of various pro-inflammatory mediators. In turn, administration of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-induced alterations at the level of the DA system in the periphery, our findings disclose a previously unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted by SARS-CoV-2 for host cell invasion and replication.


Subject(s)
COVID-19 Drug Treatment , Interferon Type I , Dopamine , Down-Regulation , Humans , Interferon Type I/genetics , Receptors, Dopamine D2 , SARS-CoV-2 , Up-Regulation
20.
IUBMB Life ; 74(2): 180-189, 2022 02.
Article in English | MEDLINE | ID: covidwho-1850069

ABSTRACT

The induction of type I interferons (IFN) is critical for antiviral innate immune response. The rapid activation of antiviral innate immune responses is the key to successful clearance of evading pathogens. To achieve this, a series of proteins, including the pathogen recognition receptors (PRRs), the adaptor proteins, the accessory proteins, kinases, and the transcription factors, are all involved and finely orchestrated. The magnitude and latitude of type I IFN induction however are distinctly regulated in different tissues. A set of interferon simulated genes (ISGs) are then expressed in response to type I IFN signaling to set the cells in the antiviral state. In this review, how type I IFN is induced by viral infections by intracellular PRRs and how type I IFN triggers the expression of downstream effectors will be discussed.


Subject(s)
Interferon Type I , Nucleic Acids , Viruses , Cytosol , Immunity, Innate , Interferon Type I/genetics
SELECTION OF CITATIONS
SEARCH DETAIL